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SUMMARY

A second-order accurate immersed interface method (IIM) is presented for solving the incompressible
Navier–Stokes equations with the prescribed velocity at the boundary, which is an extension of the IIM of
Le et al. (J. Comput. Phys. 2006; 220:109–138) to a level set representation of the boundary in place of
the Lagrangian representation of the boundary using control points on a uniform Cartesian grid. In order
to enforce the prescribed velocity boundary condition, the singular forces at the immersed boundary are
applied on the fluid. These forces are related to the jump in pressure and the jumps in the derivatives of
both the pressure and velocity, and are approximated via using the local Hermite cubic spline interpolation.
The strength of singular forces is determined by solving a small system of equations at each time step.
The Navier–Stokes equations are discretized via using finite difference method with the incorporation of
jump conditions on a staggered Cartesian grid and solved by a second-order accurate projection method.
Numerical results demonstrate the accuracy and ability of the proposed method to simulate the viscous
flows in irregular domains. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper concerns the viscous incompressible flows with the prescribed velocity condition at
the boundary. In a two-dimensional bounded domain D with the irregular boundary �D1 and
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Figure 1. A typical irregular domain (left) and the extended regular rectangular domain with an embedded
boundary (right) for the Navier–Stokes equations.

regular boundary �D2, the incompressible Navier–Stokes equations formulated in the primitive
velocity–pressure variables are considered and written as

�(ut +(u·∇)u)+∇ p=��u+Gext(x, t), x∈D (1)

∇ ·u=0, x∈D (2)

with initial and boundary conditions

u(x,0)=u0, u|�D1
=up, u|�D2

=ub (3)

where u=(u,v)T is the fluid velocity, p is the fluid pressure, � is the fluid density, � is the fluid
viscosity, x=(x, y) is the Cartesian coordinate variable, Gext(x, t)=(Gext

1 ,Gext
2 )T is an external

forcing term. Throughout this paper, the fluid density � and fluid viscosity � are assumed to be
constants over the whole domain. The readers are referred to Figure 1 (left) for an illustration of
the problem.

The irregular domain D can be extended to a larger rectangular domain � by an embedding
technique, see Figure 1 (right), where �+ =D and ��=�D2. In order to impose the prescribed
velocity condition at the irregular boundary, i.e. u|�D1

=up, the boundary �D1 can be treated as an
immersed boundary � which exerts force to the fluid [1, 2]. These singular forces at the immersed
boundary � can be introduced as the augmented variables so that the irregular boundary condition
is satisfied, i.e. u|� =up. The boundary � separates the extended fluid region into two parts �+
and �− with �=�+∪�∪�−. Therefore, finding the solutions of Equations (1)–(3) is equivalent
to solving the following equations:

�(ut +(u·∇)u)+∇ p=��u+Gext(x, t)+F(x, t), x∈� (4)

∇ ·u=0, x∈� (5)

u|� =up (6)

with the boundary condition u|�� =ub. Here, Equation (6) is the corresponding augmented equation
and the singular force F has the form of

F(x, t)=
∫

�
f(s, t)�(x−X(s, t))ds (7)
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where X(s, t)=(X (s, t),Y (s, t)) is the arc-length parametrization of the boundary �, s is the
arc-length, f=( f1, f2)T is the force density, and �(·) is the Dirac delta function defined in the
distribution sense. With the above embedding forcing approach, the original problem for (1)–(3)
becomes an interface problem for (4)–(6) with a complete system on the regular domain. The
solution in Equations (4)–(6) is a functional of the singular force f. For the current problems,
the immersed boundary is rigid (i.e. the irregular boundary is fixed) and the velocity at the
rigid boundary is specified, then the singular force at the rigid boundary is determined by the
requirement that the fluid velocity should satisfy the prescribed velocity at the rigid boundary,
which is Equation (6).

Conventional methods for solving the Navier–Stokes equations with rigid immersed boundaries
include the body-fitted or structured grid approach. In this approach, the Navier–Stokes equations
are discretized on a curvilinear grid that conforms to the immersed boundary and hence the
boundary conditions can be imposed easily. The disadvantage of this method is that robust grid
generation is required to account for the complexity of the immersed boundaries.

An alternative approach for solving complex viscous flows is the Cartesian grid method that
solves the governing equations on a Cartesian grid and has the advantages of retaining the simplicity
of the Navier–Stokes equations on the Cartesian coordinates and enabling the use of fast solvers.
One of the most successful Cartesian grid methods is Peskin’s immersed boundary method [3].
This method was originally developed to study the fluid dynamics of blood flow in the human
heart [4]. The method was further developed and has been applied to many biological problems
involving flexible boundaries [5, 6]. The immersed boundary method has also been applied to
handle problems with immersed boundaries [1, 7]. In order to deal with rigid immersed boundaries,
Lai and Peskin [1] proposed to evaluate the force density using an expression of the form

f(s, t)=Kr (Xe(s)−X(s, t)) (8)

where Kr is a constant, Kr �1, X and Xe are the arc-parametrization of the computed and the
required positions of the boundaries, respectively. The forcing term in Equation (8) is a particular
case of the feedback forcing formulation proposed by Goldstein et al. [8] with �=0. In [8], the
force is expressed as

f(s, t)=�
∫ t

0
U(s, t ′)dt ′+�U(s, t) (9)

where U is the velocity of the boundary, and � and � are chosen to be negative and large enough
so that U will stay close to zero. In order to avoid using very small time step, Mohd-Yusof [9] and
Fadlun et al. [10] proposed a direct forcing formulation. This forcing is direct in the sense that
the exact velocity is imposed directly on the rigid boundary through an interpolation procedure.
Lima E Sliva et al. [7] proposed a different approach to compute the forcing term f based on
the evaluation of the various terms in the Navier–Stokes equations at the rigid boundary. Another
similar approach that combines the original immersed boundary method with the direct and explicit
forcing was introduced by Uhlmann [11] for the simulation of particulate flows. The forcing term
at the boundary is evaluated based on the desired velocity at the boundary, which is simply given
by the rigid-body motion and a preliminary velocity obtained explicitly without the application of
a forcing term.

Once the forcing term is obtained at the boundary, the immersed boundary method uses a
discrete delta function to spread the force density to the nearby Cartesian grid points. Since the
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immersed boundary method smears out sharp interface to a thickness of order of the mesh width
and it is only first-order accurate for problems with non-smooth but continuous solutions. In
contrast, the immersed interface method (IIM) can avoid smearing out sharp interfaces and main-
tains second-order accuracy by incorporating the known jumps into the finite difference scheme
near the interface. The IIM was originally proposed by LeVeque and Li [12] for solving elliptic
equations, and later extended to Stokes flow with elastic boundaries or surface tension [13]. The
interested readers are referred to the newly published book by Li and Ito [14]. The method was
further developed for the Navier–Stokes equations in [15–17] for problems with flexible bound-
aries. Recently, the IIM has been employed to solve for viscous flows with static rigid immersed
boundaries [16, 18–20]. In [18, 19], the no-slip boundary conditions are imposed directly by deter-
mining the correct jump conditions for stream function and vorticity. In [20], a Cartesian grid
method for modeling multiple moving objects in incompressible viscous flow is considered. Le
et al. [16] have presented an immerse interface method for viscous flows involving rigid and flexible
boundaries. In [16], the immersed boundaries are presented by a set of Lagrangian controls points.
The strength of singular forces is determined to impose the no-slip condition at the boundary by
solving a small system of equations at each time step. Another Cartesian grid approach has been
presented by Ye et al. [21] and Udaykumar et al. [22] via using a finite volume technique. They
reshaped the immersed boundary cells and used a polynomial interpolating function to approxi-
mate the fluxes and gradients on the faces of the boundary cells while preserving second-order
accuracy.

In this work, a level set-based IIM with second-order accuracy is developed for solving the
incompressible viscous flows with the prescribed velocity at the boundary, which is based on
the approach of Le et al. [16] in terms of the evaluation of the forcing term. The method combines
the IIM with a level set representation of the interface on a uniform Cartesian grid, which is a
further extension of the work reported in [16] where the immersed boundary is represented by
a cubic spline interpolation. However, the spline approach is difficult to use for multi-connected
domains and for three-dimensional problems. In addition, the level set method usually has better
stability. For a spline approach, re-parameterization, filtering, and re-griding may be needed at
every or every other time steps. All these reasons favor a level set approach over a spline approach.
The numerical implementation of the different interface representation avails the potential reader
a choice of the associated numerical techniques. In the proposed method, the singular force at the
immersed boundary is determined to enforce the prescribed velocity condition at the boundary.
At each time step, the singular force is computed implicitly by solving a small, dense linear
system of equations using singular value decomposition (SVD) iterative method. Once the force
is computed, next the jump in pressure and jumps in the derivatives of both the pressure and
velocity are computed. The Navier–Stokes equations are discretized on a staggered Cartesian grid
by a second-order accurate projection method for the pressure and velocity. The jumps in the
solution and its derivatives are incorporated into the finite difference discretization to obtain a
sharp interface resolution. Fast solvers from the FISHPACK software library [23] are used to solve
the resulting discrete systems of equations. The numerical results show that the overall scheme is
second-order accurate for the velocity and nearly second-order accurate for the pressure.

The rest of the paper is organized as follows. In Section 2, the jump conditions for the velocity and
pressure and their derivatives along the immersed boundary via the singular force f are presented.
The numerical algorithm and numerical implementation are presented in Sections 3 and 4,
respectively. In Section 5, some numerical examples are presented. Some concluding remarks will
be made in Section 6.
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2. JUMP CONDITIONS ACROSS THE BOUNDARY

With the singular force, the jump conditions for the solutions of the Navier–Stokes equations
and their derivatives can be applied and determined. Let n=(n1,n2) and s=(�1,�2) be the unit
outward normal and tangential vectors to the boundary �, respectively. The jump of an arbitrary
function q(X) across � at X is denoted by

[q]= lim
�→0+ q(X+�n)− lim

�→0+ q(X−�n) (10)

Denoting (	,
) the local coordinates associated with the directions of n and s, respectively, the
jump conditions for the velocity and pressure (see [15, 16] for details) are as follows:

[u]=0, [u
]=0, [u	]=−1

�
f̂2s (11)

[u

]= 1

�
� f̂2s, [u	
]=−1

�

� f̂2
�

s− 1

�
� f̂2n (12)

[u		]=−[u

]+ 1

�
[p	]n+ 1

�
[p
]s− 1

�
[Gext] (13)

[p]= f̂1, [p	]=[Gext]·n+ � f̂2
�


, [p
]= � f̂1
�


(14)

[p

]= �2 f̂1
�
2

−�[p	], [p	
]= �([Gext]·n)

�

+ �2 f̂2

�
2
+�[p
] (15)

[p		]=[∇ ·Gext]+v
[u	]−u
[v	]−[p

] (16)

Here, f̂1 and f̂2 are the components of the force density in the normal and tangential directions of
the embedded boundary, denoting f̂=( f̂1, f̂2), and � is the curvature of the embedded boundary. In
this work, the jump conditions of second-order spatial derivative for the pressure are incorporated
into the finite difference scheme. It is noted from expressions (11)–(16) that the values of the
jumps of the first and second-order derivatives of the velocity and pressure taken with respect to
the (x, y) coordinates are easily obtained by a simple coordinate transformation:

[qx ]=[q	]n1+[q
]�1, [qy]=[q	]n2+[q
]�2 (17)

[qxx ]=[q		]n21+2[q	
]n1�1+[q

]�21 (18)

[qyy]=[q		]n22+2[q	
]n2�2+[q

]�22, q=u, p (19)

3. NUMERICAL ALGORITHM

The numerical algorithm to be employed is based on the pressure-increment projection algorithm
for the discretization of the Navier–Stokes equations with special treatment at the grid points near
the embedded boundary [16]. The spatial discretization is carried out on a standard marker-and-cell
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Figure 2. A diagram of the embedded boundary cutting through a staggered grid with a uniform mesh
width h, where the velocity component u is at the left–right face of the cell and v is at the top–bottom

face, and the pressure is at the cell center.

(MAC) staggered grid similar to that found in Harlow and Welch [24]. A uniform MAC gird with
mesh width h=�x=�y is used in the computation. With the MAC mesh, the pressure field is
defined at the cell center (i, j), where i ∈{1,2, . . . ,Nx } and j ∈{1,2, . . . ,Ny}. The velocity fields
u and v are defined at the vertical edges and horizontal edges of a cell, respectively. The pressure
and the velocity components u and v are arranged as in Figure 2.

3.1. Projection method

Assuming that the force f at the immersed boundary is known, the pressure-increment procedure
for problems with immersed interfaces is analogous to the projection method presented in [25].
The discretization of the Navier–Stokes equations at those grid points near the embedded boundary
needs to be modified to account for the jump conditions across the boundary due to the presence
of singular forces at the boundary. The discreted expressions will include coefficients C1, C2, etc.,
which will be evaluated later. Given the velocity un and the pressure pn−1/2, the velocity un+1

and pressure pn+1/2 at the next time step are computed as follows:
Step 1: Compute an intermediate velocity field u∗ by solving

u∗−un

�t
+(u·∇u)n+1/2=−1

�
∇ pn+1/2+ �

2�
(�hu∗+�hun)+ 1

�
gn+1/2+C1 (20)

u∗|�� =un+1
b (21)

where the advection term is extrapolated using the formula

(u·∇u)n+1/2= 3
2 (u·∇hu)n− 1

2 (u·∇hu)n−1+C2 (22)

and the pressure gradient is approximated simply as

∇ pn+1/2=GMAC pn−1/2+C3 (23)
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The above step can be rewritten in the following Helmholtz equations form:

�0u∗+�hu∗ =RHS (24)

where RHS is the right hand, which includes the correction terms and �0=−2�/��t .
Step 2: Compute a pressure update 
n+1 by solving the Poisson equation

�h

n+1= �

�t
DMACu∗+C4 (25)

with boundary condition

n·∇
n+1|�� =0

Step 3: Once 
n+1 is obtained by solving Equation (25), both the pressure and velocity field
(pn+1/2,un+1) are updated as

un+1=u∗− �t

�
GMAC
n+1+C5 (26)

pn+1/2= pn−1/2+
n+1− �

2�
DMACu∗+C6 (27)

The coefficients C1,C2,C3,C4,C5, and C6 are the spatial correction terms, which are added to
the finite difference equations at the points near the boundary to improve the accuracy of the local
finite difference approximations. These correction terms can be computed by using the generalized
finite difference formulas if the jumps in the solution and their derivatives are known and will be
evaluated later. In the above expressions, ∇h and �h are the standard central difference operators,
GMAC and DMAC are the MAC gradient and divergence operators, respectively. These operators
are defined as

∇hui, j =
(
ui+1, j −ui−1, j

2h
,
ui, j+1−ui, j−1

2h

)
(28)

�hui, j = ui+1, j +ui−1, j +ui, j+1+ui, j−1−4ui j
h2

(29)

(GMAC p)i j =
(
pi+1, j − pi, j

h
,
pi, j+1− pi, j

h

)
(30)

(DMACu)i, j = ui+1, j −ui, j
h

+ vi, j+1−vi, j

h
(31)

In our projection method, two Helmholtz equations for u∗ in (21) or (24) and one Poisson-like
equation for 
n+1 in (25) need to be solved at each time step. Since the correction terms in (21)
or (24) and (25) only affect the right-hand sides of the discrete systems for the Helmholtz and
Poisson equations, there are many methods which can be used to solve these linear system, for
example, the conjugate gradient method and multigrid method. In the present work, the fast solvers
from FISHPACK [23] are used to solve these equations.
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3.2. Correction terms calculation

In this section, the correction terms C1, C2, C3, C4, C5, and C6 will be evaluated. One of
the basic components for determining the correction terms is the generalized finite difference
formulas which will be briefly reviewed in this section. Here four generalized finite difference
formulas are shown for demonstration. Assume that the boundary cuts a grid line between two
grid points at x=�, xi��<xi+1, xi ∈�−, xi+1∈�+, where �− and �+ denote the region inside
and outside the boundary, respectively. Then, the following approximations hold for a piecewise
twice differentiable function q(x):

qx (xi )= qi+1−qi−1

2h
− 1

2h

2∑
m=0

(h+)m

m! [q(m)]�+O(h2) (32a)

qxx (xi )= qi+1−2qi +qi−1

h2
− 1

h2

2∑
m=0

(h+)m

m! [q(m)]�+O(h) (32b)

where q(m) denotes the mth derivative of q, qi =q(xi ), h+ = xi+1−�, h− = xi −� and h is the
mesh width in x direction. The jump in q and its derivatives are defined as

[q(m)]� = lim
x→�,x∈�+ q

(m)(x)− lim
x→�,x∈�− q

(m)(x) (33)

in short, [·]=[·]�, and q(0) =q . Note that if the boundary cuts a grid line between two grid points
xi ∈�+ and xi+1∈�−, these expressions need to be modified by changing the sign of the second
terms on the respective right-hand sides. Expressions involving two or more boundary crossings
could also be derived, the readers are referred to [26] for details. From Equations (32a) and (32b)
the correction terms for qx (xi ) and qxx (xi ) can be defined as

C{qx (xi )}=− 1

2h

2∑
m=0

(h+)m

m! [q(m)] (34)

C{qxx (xi )}=− 1

h2

2∑
m=0

(h+)m

m! [q(m)] (35)

Thus, the finite difference approximation near the boundary, for the derivatives of a function q ,
includes the standard central difference terms plus the additional correction terms. Accordingly,
the correction terms C1, C2, C3, C4, C5 and C6 are evaluated as follows:

C1= 1

2�
(C{�u∗}+C{�un}) (36a)

C2= 3
2C{(u·∇u)n}− 1

2C{(u·∇u)n−1} (36b)

C3=C{∇ pn−1/2} (36c)

C4=�
C{∇ ·u∗}

�t
−C{∇(∇ pn+1/2)}+C{∇(∇ pn−1/2)} (36d)
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C5=−�t

�
(C{∇ pn+1/2}−C{∇ pn−1/2}) (36e)

C6=− �

2�
C{∇ ·u∗} (36f)

It is noted that all the correction terms are evaluated at least for first-order accuracy. This is
sufficient to guarantee second-order accuracy globally since our numerical scheme is second order
away from the boundary and only the irregular points near the boundary are treated with a first-
order scheme. In (36a), (36d), and (36f ), the jump conditions for un+1 are used to approximate
the jump conditions for u∗ as it is expected that u∗ is a good approximation for un+1. To evaluate
the correction term C{�u∗} of (36a) at a point (i, j) as depicted in Figure 3, [u∗

x ] and [u∗
xx ] at the

intersection point �, and [u∗
y] and [u∗

yy] at � using the force strength at time level n+1 need to be
computed. The correction term C{�u∗} is calculated as follows:

C{�u∗}i, j =−
[u∗]+h+[u∗

x ]�+ (h+)2

2
[u∗

xx ]�
h2

−
[u∗]+k−[u∗

y]�+ (k−)2

2
[u∗

yy]�
h2

where h+ = xi+1−x�, k− = y j−1− y�, and x� and y� are the x-coordinate of the intersection point
� and the y-coordinate of the intersection point � as shown in Figure 3, respectively. �u∗ is
approximated at the irregular point (i, j) as

�u∗(i, j)=�hu∗
i, j +C{�u∗}i, j +O(h)

Similarly, other correction terms in (36b)–(36f ) can be computed as follows:

C{∇ ·u}i, j =−
[u]+h+[ux ]�+ (h+)2

2
[uxx ]�

h
+

[v]+k−[vy]�+ (k−)2

2
[vyy]�

h

C{∇ p}i, j =

⎛
⎜⎜⎝−

[p]+h+[px ]�+ (h+)2

2
[pxx ]�

h
,

[p]+k−[py]�+ (k−)2

2
[pyy]�

h

⎞
⎟⎟⎠

(i, j)

Irregular grid point
Regular grid point

Figure 3. The embedded boundary and mesh geometry near the irregular grid point (i, j).
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3.3. Level set representation of boundaries

The zero level set of a two-dimensional function �(x, y) is used to represent the boundary. That
is, �(x, y) is such a function such that

�={(x, y) :�(x, y)=0} (37)

Generally, �(x, y) is chosen as the signed distance function from the boundary.
�+ ={(x, y), |�(x, y)�0} and �− ={(x, y), |�(x, y)<0} are denoted. In this work, the level
set function is defined at the same location with the pressure (at the cell center), i.e �i, j =
�(xi+1/2, y j+1/2). A grid point (xi+1/2, y j+1/2) is called an irregular inner grid point if �i, j<0
and any of the following four inequalities is true:

�i, j ·�i−1, j � 0, �i, j ·�i+1, j�0

�i, j ·�i, j−1 � 0, �i, j ·�i, j+1�0
(38)

Similarly, a grid point (xi+1/2, y j+1/2) is an irregular outer grid point if �i, j�0 and any of the
following four inequalities is true:

�i, j ·�i−1, j < 0, �i, j ·�i+1, j<0

�i, j ·�i, j−1 < 0, �i, j ·�i, j+1<0
(39)

Then the projection points {X∗}={(X∗,Y ∗)} of the irregular grid points onto the boundary
are computed, as illustrated in Figure 4. Assume that xi+1/2, j+1/2 is an irregular grid point. The
corresponding orthogonal projection point on the boundary satisfies

X∗ =xi+1/2, j+1/2+�w (40)

where w=(��i j/�x,��i j/�y). Using the Taylor expansion of �(X∗)=�(xi j +�w)=0 at xi j , the
following quadratic equation for the unknown variable � is obtained:

�i j +(∇�i j ·w)�+ 1
2 (w

TH(�i j )w)�2=0 (41)

(xi+1/2 , yj+1/2)

(xi+1/2 , yj+3/2)

(xi+3/2 , yj+1/2)

(xi+3/2 , yj+3/2)

Y *

X *

Figure 4. The corresponding projection point X∗ =(X∗,Y ∗) of an irregular grid point x=(xi , y j ) on the
boundary �, where (	,
) is the local coordinate system at X∗.
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where the Hessian matrix H is defined as

H(�i j )=

⎛
⎜⎜⎜⎜⎜⎝

�2�i j

�x2
�2�i j

�x�y

�2�i j

�y�x

�2�i j

�y2

⎞
⎟⎟⎟⎟⎟⎠ (42)

The detailed algorithm for finding the projection points is explained in [27, 28]. The spatial
derivatives of the level set function are approximated using the following central finite difference
schemes at (xi+1/2, y j+1/2):

��i j

�x
≈ �i+1, j −�i−1, j

2h
,

��i j

�y
≈ �i, j+1−�i, j−1

2h
(43)

�2�i j

�x2
≈ �i+1, j −2�i, j +�i−1, j

h2
,

�2�i j

�y2
≈ �i, j+1−2�i, j +�i, j−1

h2
(44)

�2�i j

�x�y
= �2�i j

�y�x
≈ �i+1, j+1+�i−1, j−1−�i+1, j−1−�i−1, j+1

4h2
(45)

At each orthogonal projection point X∗, the geometrical information needed includes the curvature
� and the angle � between the normal direction and the x-axis at X∗. The curvature is defined as
usual

�=−
�2�
�x2

(
��

�y

)2

−2
�2�
�x�y

��

�x
��

�y
+ �2�

�y2

(
��

�x

)2

((
��

�x

)2

+
(

��

�y

)2
)3/2

(46)

The unit normal direction is determined by

n1=
��

�x√(
��

�x

)2

+
(

��

�y

)2
, n2=

��

�y√(
��

�x

)2

+
(

��

�y

)2
(47)

The derivatives of � at X∗ can be approximated using the bilinear interpolation formula from the
derivatives already calculated at four neighboring grid points using (43)–(45). Similarly, � and n
at X∗ can be calculated.

3.4. Calculation of surface derivatives

To determine the above correction terms (36a)–(36f ), a key part is to compute the first and second
derivatives of the force f along the boundary. It is assumed that the values of the boundary function

(s) are known at all the projection points {X∗

K } from the inner irregular grid points and below is
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K-1
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K+1
K+2

(    ,      )x y

Figure 5. A diagram used to interpolate the surface derivatives at the intersections of the boundary � and
grid lines, where dark circles represent the projection points from the inner irregular grid points.

how to interpolate 
(s), 
′(s), and 
′′(s) at the intersections of the boundary and grid lines, and

′(s) and 
′′(s) at the projection points from the inner irregular grid points, see Figure 5 for an
illustration. The least-squares interpolation scheme for approximating 
(s∇) can be written as∑

k
�k
(sk) (48)

where �k’s are the coefficients, which need to be determined from the Taylor expansion at the
interpolation point s∇


(sk)=
(s∇)+
′(s∇)�sk+ 1
2


′′(s∇)(�sk)
2+O((�sk)

3) (49)

where �sk =sk −s∇ is the signed arc-length from the boundary point at s=sk to the point at
s=s∇ . Defining

a1=∑
k

�k, a2=∑
k

(sk−s∇)�k, a3=∑
k

1
2 (sk−s∇)2�k (50)

and substituting (49) into (48), the coefficients �k can be obtained by setting

a1=1, a2=0, a3=0 (51)

In order to keep the symmetry strictly, in our computations, the first closest two projection points to
the intersection point (X (s∇),Y (s∇)) from each side of this point are chosen for the interpolation,
respectively, then the SVD method is used to solve the system of equations (51). Similarly, other
surface derivatives 
′(s∇) and 
′′(s∇) can be obtained.

3.5. Determination of force f at projection points

If the force f at the immersed boundary is known as assumed before, the velocity field un+1 at
all the grid points can be computed via the projection method as discussed in Section 3.1. The
velocity at the projection points from the outside of the boundary, Uk , can be interpolated from
the velocity un+1 at the grid points as in [16]. Thus, it can be written as

Uk =U(Xk)=I(un+1) (52)
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where I is the interpolation operator that includes the appropriate correction terms required to
guarantee at least second-order accuracy when the derivatives of the velocity are discontinuous.
Two ways are to use the third-order accurate least-square interpolation scheme in [14] and the
modified bilinear interpolation with jump conditions in [16]. As an alternative approach, three
nearby points are used to perform linear interpolation that is modified to incorporate the jump
condition at the boundary. The readers are referred to [13] for details. Since the relationships
between the singular forces and the jumps in the solution or its derivatives are linear and all the
implicit equations solved at each time step of the projection method are linear, the velocity at the
immersed boundary can be written as

Uk =U0
k+Af (53)

where U0
k corresponds to the velocity at the projection points obtained by solving Equations (4)

and (5) with f=0, given un and pn−1/2. A is a 2Nb×2Nb matrix, where Nb is the number of
projection points. The vector Af is the velocity at the projection points obtained by solving the
following equations:

u∗
f

�t
= �

2�
�hu∗

f +C̄1, u∗
f |�� =0 (54)

�h

n+1
f = �

�t
DMACu∗

f +C̄4, n·∇
n+1
f |�� =0 (55)

un+1
f =u∗

f − �t�

�
GMAC
n+1

f +C̄5 (56)

Af=I(un+1
f ) (57)

with f being the singular force at the immersed boundary. Here, C̄1, C̄4, and C̄5 are the correction
terms that take into account the effect of the singular force f at the immersed boundary. From
Equation (53), with the prescribed velocity Up at the immersed boundary, the singular force f at
the immersed boundary is determined by solving

Af=Up−U0
k (58)

Note that the matrix A depends on the location of the boundary and the time step �t . If the
boundary and the time step are fixed, the matrix A will be same at every time step. Therefore,
the matrix A needs to be formed and factorized only once in this case. In order to compute the
coefficients of A, Equations (54)–(56) are solved for 2Nb times, i.e. once for each column. Each
time, the singular force f is set to zero except for the entry corresponding to the column that is
to be calculated, which is set to one. Once the matrix A has been calculated, only the terms on
the right-hand side, Up−U0

k , need to be computed at each time step. The resulting small system
of Equation (58) is then solved at each time step for f via back substitution. Finally, Equations
(21)–(27) are solved to obtain un+1 and pn+1/2. In actual computation, the SVD method is used
to solve the system of Equation (58).
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4. NUMERICAL IMPLEMENTATION

In this section, a basic implementation of the proposed algorithm is described. The coefficient
matrix using SVD is factorized as

A=URVT (59)

where U=[u1, . . . ,uNb ] and V=[v1, . . . ,vNb ] are orthogonal matrices and R=diag(�1, . . . ,�Nb)

is a diagonal matrix whose elements are the singular values of the original matrix such that

�1��2� · · ·��Nb�0 (60)

U,V, and R are stored for solving the force f at every time step. At each time step, given the
velocity field un and pressure field pn−1/2, the proposed algorithm for finding un+1, pn−1/2,
and the singular force f to enforce the prescribed velocity Up at the immersed boundary can be
summarized as follows:

Algorithm The implementation of the IIM with the prescribed velocity at the boundary

Step 1: Compute the right-hand side of (58) by calculating Up−U0
k .

• Set f=0, and solve (24)–(26) for the velocity at all the grid points.
• Interpolate the velocity at the projection points U0

k as in (52).
• Compute the right-hand side vector b=Up−U0

k .

Step 2: Compute the singular force f by solving (58) using the SVD method. The singular force
f can be written in terms of the SVD as

w=
Nb∑
i=1

uTi b

�i
vi (61)

Step 3: Compute un+1 and pn+1/2 using the projection method with the incorporation of the
appropriate correction terms.

5. NUMERICAL EXAMPLES

In this section, several numerical experiments are carried out to demonstrate the capabilities and
the accuracy of the proposed algorithm in this work. Throughout this section, � is taken to be 1
in all simulations.

Example 5.1 (Circular Couette flow)
In the first example, the steady circular Couette flow between two rotating translating concentric
cylinders is considered. The domain of the simulation and the geometry of the two rotating
concentric cylinders are shown in Figure 6. The solution domain is the rectangle of the size
[−ax/2,ax/2]×[−bx/2,bx/2]. The angular velocities of the inner and outer cylinders are denoted

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:267–290
DOI: 10.1002/fld



LEVEL SET-BASED IIM FOR INCOMPRESSIBLE VISCOUS FLOWS 281
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Figure 6. The domain of the simulation and the geometry of circular Couette flow.

as �1 and �2, respectively. In the simulations, r1=0.5, r2=2.0, ax =ay =2. The analytical
solution of the steady flow between the two cylinders is given by

u=−
(
A+ B

r2

)
y (62)

v=
(
A+ B

r2

)
x (63)

p= A2r2

2
− B2

2r2
+AB ·ln(r2)+ p0 (64)

where r =√x2+ y2, p0 is an arbitrary constant, and A1 and A2 are

A= �2r22 −�1r21
r22 −r21

(65)

B= (�1−�2)r21r
2
2

r22 −r21
(66)

The Dirichlet boundary conditions are applied for the velocity at the far-field boundary �� in
Figure 6, and they are obtained from the analytical solution. In the current numerical setup, only
the inner cylinder � is contained in the simulation domain. It is easy to verify that the velocity
satisfies the incompressibility constraint, and it is continuous but has a finite jump in the normal
direction across the boundary.

In our computations, the simulation is performed with a 64×64 grid, and the time step is taken
as �t=�x/4. We first take �1=1, �2=−1, and �=0.1. In Figure 7, the plots for the computed
u-component velocity and the velocity field at t=10 are presented. From Figure 7(a), it can be
seen that the velocity u is continuous but not smooth, as expected. In this case, the grid refinement
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Figure 7. For Example 5.1 on circular Couette flow: (a) the x-component of velocity field u and (b) the
velocity field u with �1=1,�2=−1 and �=0.1 at t=10.
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Figure 8. For Example 5.1 on circular Couette flow. Pressure distribution
with �1=1,�2=−1 and �=0.1 at t=10.

analysis is performed to determine the order of convergence of the algorithm. The order of accuracy
is estimated as (Figure 8)

order= log(‖Eu(N )‖∞ /‖Eu(2N )‖∞)

log2
(67)
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Table I. Grid refinement analysis for Example 5.1 with �1=1,�2=−1 and �=0.1 at t=2.

N ‖Eu ‖∞ Order ‖Ep ‖∞ Order

32 1.2114E−02 — 1.5329E−02 —
64 2.7106E−03 2.16 4.1359E−03 1.89
128 6.5912E−04 2.04 1.1315E−03 1.87
256 1.5698E−04 2.07 3.0108E−04 1.91

here, ‖Eu(N )‖∞ is the maximum error

‖Eu(N )‖∞=max
i, j

|Ui j −u(xi , y j )| (68)

where u(xi , x j ) is the exact solution at (xi , x j ) and Ui j is the numerical solution.
The result of the convergence rate analysis is shown in Table I. From Table I, one can easily see

that the velocity is second-order accurate, and the pressure is nearly second-order accurate. Next
we take �1=2, �2=−2, and a relatively low viscosity �=0.001. The corresponding computed
u-component velocity and the velocity field at t=10 are presented in Figure 9. It demonstrates
that the method is stable at the relatively low viscous viscosity.

Example 5.2 (Rotational flow)
In this example, a fixed interface problem with no exact solution taken from [16] is considered.
The interface is a circle with radius r = 1

2 , which is located at the center of the square domain
[−1,1]×[−1,1]. The initial velocity and pressure are taken to be zero on the square domain.
On the boundary of �, the no-slip boundary conditions are set. The boundary is prescribed to
rotate with angular velocity �=2. The viscosity � is set to be 0.02, and the solution at t=10 is
considered.

In the computations, a 64×64 grid is used and the time step �t=�x/4 is taken. The flow
converges to a steady state in the end, as shown in Figure 10, which corresponds to a rigid-body
motion inside the interface. Figures 10(a) and (b) show the x-component of the velocity field u
and the velocity field at t=10, respectively. From Figure 10(a) it can be observed that the velocity
u is continuous but not smooth, as expected. The plot of the pressure at t=10 is presented in
Figure 11. Finally, a grid refinement analysis is carried, using a referenced grid of 512×512, to
determine the order of the convergence of the algorithm. The results in Table II indicate that the
velocity is second-order accurate and the pressure is nearly second-order accurate.

Example 5.3 (Flow past a stationary cylinder)
In this example, an unsteady flow past a circular cylinder of diameter d=0.1 immersed in a rectan-
gular domain �=[0,3]×[0,1.5] is simulated. The center of the cylinder is located at (1.6,0.75).
The free stream velocity is set to unity, U∞ =1. Simulations are carried out at Reynolds number
(Re=U∞d/�) of 20, 40, 100, and 200 on a 512×256 computational mesh. The free stream
velocity at the domain inlet is specified and a homogeneous Neumann boundary condition for
the velocity at the domain outlet is applied. The homogeneous Neumann boundary condition and
homogeneous Dirichlet boundary condition are set for the x-component and y-component of the
velocity, respectively, at the top and bottom boundaries. The homogeneous Neumann boundary
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Figure 9. For Example 5.1 on circular Couette flow: (a) the x-component of velocity field u and (b) the
velocity field u with �1=2,�2=−2 and �=0.001 at t=10.
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Figure 10. For Example 5.2 on rotational flow: (a) the x-component of velocity field u
and (b) the velocity field u at t=10.

condition is specified for the pressure increment. For all the simulations, the free stream velocity
is used as the initial velocity and the initial pressure is set to zero. Once the velocity field and
pressure field have been computed, the drag and lift coefficients and the Strouhal number can be
computed from the force at the projection points as found in [1, 7].
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Figure 11. For Example 5.2 on rotational flow. Pressure distribution at t=10.

Table II. Grid refinement analysis for Example 5.2 with �=0.02 at t=10.

N ‖Eu ‖∞ Order ‖Ep ‖∞ Order

64 1.6705E−03 — 5.3145E−03 —
128 4.3235E−04 1.95 1.4044E−03 1.92
256 1.0155E−04 2.09 3.8421E−04 1.87
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Re = 20: Streamlines

Figure 12. For Example 5.3 on flow past a stationary cylinder. Streamlines for Re=20.

The plots of streamline for Re=20 and Re=40 at steady state are shown in Figures 12 and 14,
respectively. For these low Reynolds numbers, as expected, the flow gradually attains a steady state
and the wake forms behind the cylinder symmetrically. In Figures 13 and 15, the corresponding
plots of the pressure contours for Re=20 and Re=40 are also shown, respectively. These results
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Re = 20: Pressure contours
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Figure 13. For Example 5.3 on flow past a stationary cylinder. Pressure contours for Re=20.

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
0.6

0.65

0.7

0.75

0.8

0.85

0.9
Re = 40: Streamlines

Figure 14. For Example 5.3 on flow past a stationary cylinder. Streamlines for Re=40.

Re = 40: Pressure contours
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Figure 15. For Example 5.3 on flow past a stationary cylinder. Pressure contours for Re=40.
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Table III. Length of the recirculation zone (L/d) and drag coefficient (CD) for Re=20 and Re=40.

Re=20 Re=40

L/d CD L/d CD

Tritton [31] — 2.22 — 1.48
Coutanceau and Bouard [30] 0.73 — 1.89 —
Fornberg [29] 0.91 2.00 2.24 1.50
Calhoun [18] 0.91 2.19 2.18 1.62
Russell and Wang [20] 0.94 2.13 2.29 1.60
Ye et al. [21] 0.92 2.03 2.27 1.52
Le et al. [16] 0.93 2.05 2.22 1.56
Present 0.93 2.06 2.24 1.57

Re = 100: Pressure contours
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Re = 200: Pressure contours
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Figure 16. For Example 5.3 on flow past a stationary cylinder. Pressure
contours for Re=100 and Re=200.

are found in a very good agreement with the results of [16]. At the steady state, the drag coefficients
and the length of the recirculation zone are computed and are compared with other numerical
results [7, 16, 18, 20, 21, 29] as well as experimental results [30, 31] in Table III. It is clear that our
drag coefficients are in reasonably good agreement with them. At Re=100 and Re=200, the flow
is unsteady, and Figure 16 shows the pressure field at Re=100 and Re=200. The instability and
vortex shedding can be seen from this figure. In Table IV, the drag coefficients, lift coefficients,
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Table IV. Summary of results for Re=100 and Re=200.

Re=100 Re=200

CL CD St CL CD St

Braza et al. [32] ±0.250 1.36±0.015 — ±0.75 1.40±0.050 —
Liu et al. [33] ±0.339 1.35±0.012 0.164 ±0.69 1.31±0.049 0.192
Calhoun [18] ±0.298 1.33±0.014 0.175 ±0.67 1.17±0.058 0.202
Russell and Wang [20] ±0.300 1.38±0.007 0.169 ±0.50 1.29±0.022 0.195
Le et al. [16] ±0.323 1.37±0.009 0.160 ±0.43 1.34±0.030 0.187
Present ±0.329 1.37±0.010 0.162 ±0.56 1.36±0.040 0.193
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Figure 17. For Example 5.3 on flow past a stationary cylinder. Drag and
lift coefficients versus time for Re=100.

and Strouhal numbers at Re=100 and Re=200 are compared with other numerical results. Good
agreement is again found from this table. In particular, the plots of time evolution of the drag and
lift coefficients at Re=100 are presented in Figure 17.

6. CONCLUDING REMARKS

In this paper, a level set-based immersed interface algorithm is presented for solving the incompress-
ible Navier–Stokes equations with the prescribed velocity at the boundary. The method combines
the IIM with a level set representation of the interface on a uniform Cartesian grid. The main
advantage of the method is that the prescribed boundary condition is exactly satisfied. The grid
convergence analysis shows that current algorithm can achieve second-order accurate in both the
velocity and pressure. It is a rather straightforward manner to extend the current algorithm to
solve the problems with multi-connected domains and moving geometry. Our method is capable
of solving incompressible flow problems involving flexible interface in irregular domains by incor-
porate the current approach with the earlier work [15] which is based on level set method for
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problems with deformable interfaces. The present method can be also easily extended to 3D. A
3D version of the method is under development and will be reported in the future.
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